2012 ANTIBIOGRAM FOR SELECTED BACTERIA OF PUBLIC HEALTH AND CLINICAL SIGNIFICANCE: ISOLATES COLLECTED BY CLINICAL LABORATORIES IN MONTANA The Montana Department of Public Health and Human Services monitors antimicrobial susceptibility testing (AST) and has provided a statewide antibiogram annually since 2005. For the 2012 analyses, AST data were collected from 26 laboratories (red pins with black dots on map) and over 40,000 isolates were tested throughout the state. Data from each participating laboratory are compiled to create a statewide antibiogram using the methodology described by the Clinical and Laboratory Standards Institute (CLSI)¹. Data are presented as the mean ± standard error of the mean (SEM) and variability is also assessed through the calculation of a coefficient of variation (CV). When the CV exceeds 20% it is annotated on the antibiogram and can be due to a single outlier, low sample number, or significant differences amongst values reported by each facility. The utilization of CLSI performance standards (M100 Table) is paramount to successful antimicrobial identification and guidance of treatment². Most variability in the 2012 AST data could be attributed to facility-dependent factors such as patient population. There are other instances of improbable results that include: 46 isolates of *K. pneumoniae* reported as ampicillin-susceptible, 244 isolates of *P. aeruginosa* reported as cefepime-resistant, continued reporting of penicillin susceptiblity for methicillin-resistant *S. aureus* (MRSA) isolates, and 23 isolates of methicillin-susceptible *S. aureus* (MSSA) reported as *not* susceptible to oxacillin (likely a clerical error). The present analyses include the reporting of resistant organisms of major public health significance. Of the isolates reported for the *Enterobacteriaceae* family (*E. coli, K. pneumoniae, Enterobactor spp.*), 183 (0.4%) were not susceptible to carbapenems. Only 82 potentially resistant isolates had been submitted to the MT Public Health Laboratory (PHL) for confirmation. Of these, only 15 isolates were positive using the modified Hodge test. Carbapenem-resistant *Enterobacteriaceae* (CRE) are categorized as "urgent threats" in a recently published CDC document³, and every one of these isolates should be forwarded to the MT PHL. Another finding was the reporting of isolates of the *Enterococcus* species as not susceptible to vancomycin. Of isolates differentiated and reported as *E. faecalis* or *E. faecium*, 110 (4% of total tested; down from 6% in 2011) were reported as not susceptible to vancomycin. The aforementioned CDC report lists these organisms as "serious threats", with vancomycin-resistant *Enterococcus* (VRE)-associated illness causing more than 1000 deaths per year in the U.S. Over 2000 isolates are designated as MRSA for 2012 (33% of all *S. aureus* isolates differentiated as MRSA or MSSA), numbers that are roughly equal to those found in the 2011 analyses. Over twice that number of isolates (>4000) are reported as MSSA; however, 2 of these isolates are reported as not susceptible to vancomycin (i.e. VISA and VRSA). This is a significant decrease from the 2011 report, where a dozen unconfirmed VISA/VRSA isolates were reported. This change may have been due to a true decrease in the number of VISA/VRSA reported or, more than likely, due to absence of data from those laboratories which reported in 2011 but not in 2012. According to MT PHL 2012 records, VISA/VRSA isolates from three separate patients were submitted for confirmation. Of these, one was VISA/VRSA negative (also MRSA negative), two were VISA positive by E-test, and one was referred to the CDC. Broth microdilution did not confirm VISA in this case. VISA/VRSA have been designated "concerning threats" and, although their incidence may be low, the infections prove extremely difficult to treat. Please note that, under the updated rules in the Laboratory Reporting of Communicable Diseases in Montana⁴, all suspected or confirmed isolates of CRE and VISA/VRSA must be submitted to the state Public Health Laboratory for confirmation and further characterization. | | | penicillins | | | | | | | | | | | cephems | | | | macrolides | | | quinolones | | | | | | | | | |-----------------------------------|-----------------------------|---------------------|---------------------|---------------------|-----------------------------------|--------------------------------|-------------------------|-----------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------|---------------------------|--|---------------------|-----------------------|----------------------------|-----------------------------------|--------------------|---------------------|---------------------------------|---------------------|---------------------|--------------------|---------------|---------------------| | Gram Positive
Isolates | # of isolates (all sources) | Penicillin | Ampicilin | Oxacillin | Trimethoprim-
Sulfamethoxazole | Rifampin | Vancomycin | Tetracycline | Linezolid | Daptomycin | Meropenem | Cefotaxime | Ceftriaxone | Levoflaxacin | # of isolates (non-urine) | Azithro, Clarithro, or
Erithromycin | Clindamycin | Erythromycin | # of isolates (urine only) | Ciprofloxacin | Levofloxacin | Norfloxacin | Nitrofurantoin | Tetracycline | | | | | | S. aureus
(non-differentiated) | 2160 | 898
11.7 ± 4.1 | | 1999
59.7 ± 4.0 | 2139
99.2 ± 0.3 | 2139
99.1 ± 0.5 | 2139
99.9 ± 0.1 | 2160
94.8 ± 0.8 | 1981
95.9 ± 3.2 | 781
99.3 ± 0.7* | | | | | 791 | 583
40.4 ± 10.4* | 791
83.6 ± 4.3 | 341
39.5 ± 4.5* | 109 | | | | 109
99.3 ± 0.7 | | | | | | | S. aureus (MRSA) | 2018 | 505
0.0 | | 1509
7.7 ± 7.7 | 1530
98.9 ± 0.4 | 1520
98.9 ± 0.3 | 1686
99.8 ± 0.2 | 1588
91.0 ± 3.2 | 1885
98.5 ± 1.0 | 85
98.5 ± 1.5* | | | | | 322 | 102
18.2 ± 12.3* | 322
67.4 ± 9.3* | 315
23.0 ± 14.7* | 54 | | | | <mark>52</mark>
85.5 ± 14.5* | | | | | | | S. aureus (MSSA) | 4132 | 2091
22.2 ± 3.1 | | 3739
99.6 ± 0.4 | 4121
98.1 ± 0.7 | 3735
98.4 ± 0.7 | 4121
100.0 ± 0.0 | 3734
95.6 ± 0.6 | 3833
98.5 ± 1.4 | 229
100.0 ± 0.0* | | | | | 1036 | 57
53.7 ± 6.3* | 947
75.9 ± 5.5 | 1033
61.0 ± 3.4 | 76 | | | | 62
97.7 ± 2.3* | | | | | | | S. pneumoniae | 411 | 258
59.5 ± 7.8 | | | 185
81.3 ± 7.2 | | 392
100.0 ± 0.0 | 392
85.2 ± 2.7 | | | 107
90.8 ± 3.1* | 150
97.7 ± 1.2 | 315
94.4 ± 3.6* | 313
98.9 ± 0.9 | 75 | | | 75 58.5 ± 8.9* | | | | | | | | | | | | Enterococcus spp. | 1004 | 907
88.8 ± 4.7* | 1004
89.7 ± 2.7 | | | | 997
97.8 ± 1.1 | | 152
100.0 ± 0.0* | 55
100.0 ± 0.0* | | | | | | | | | 43 | 37
90.0 ± 10.0* | 37
88.5 ± 2.5* | | 37
100.0 ± 0.0* | | | | | | | E. faecalis | 2387 | 1944
97.3 ± 1.1 | 2295
97.1 ± 1.2 | | | | 2364
98.5 ± 0.7 | | 2146
94.8 ± 2.1 | 123
96.3 ± 2.8* | | | | | | | | | 1006 | 891
65.5 ± 5.2 | 904
68.3 ± 3.7 | | 976
97.8 ± 1.1 | 796
28.3 ± 3.2 | | | | | | E. faecium | 192 | 94
47.6 ± 12.8* | 185
45.6 ± 9.1 | | | | 192
61.8 ± 11.6 | | 160
97.6 ± 1.5* | | | | | | | | | | 39 | 39
46.6 ± 13.5* | 39
46.6 ± 13.5* | | 39
57.2 ± 20.6* | 34
57.8 ± 10.4* | aminoglycosides | | | | b-lactam/b-lactamase inhibitor | | | | | ceph | ems | | | quinolones | | carbapenems | | | sulfona-
mide | | | | | single agents | | | | | Gram Negative
Isolates | # of isolates (all sources) | Gentamidn | Tobramycin | Amikacin | Amoxicillin-Clavulanic Acid | Ampicilin-Sulbactam | Piperacillin-Tazobactam | Ticarcillin-Clavulanic Acid | Cefazolin | Cefuroxime | Cefepime | Cefotetan | Cefoxitin | Cefotaxime or Ceftriaxone | Ciproflaxacin | Levoflaxicin | Ertapenem | Imipenem | Meropenem | Trimethoprim-
Sulfamethoxazole | Pipercillin | Ampicillin | # of isolates urine only | Cephalothin | Norfloxacin | Nitrofurantoin | Sulfisoxazole | Trimethoprim | | E. coli | 20251 | 18577
94.4 ± 0.5 | 19257
91.5 ± 2.5 | 12384
99.3 ± 0.4 | 9279
87.7 ± 1.6 | 16412
72.0 ± 1.8 | 9744
96.6 ± 1.2 | 1875
92.3 ± 2.2 | 19949
90.5 ± 0.8 | 3001
87.2 ± 5.7 | 18069
95.2 ± 1.8 | 1265
98.8 ± 0.8* | 11282
95.0 ± 0.8 | 16017
94.8 ± 2.4 | 20177
84.2 ± 1.3 | 18015
83.3 ± 1.4 | 14277
99.6 ± 0.2 | 19904
99.8 ± 0.1 | 6448
99.8 ± 0.2 | 19324
81.7 ± 1.2 | 3219
58.6 ± 4.2 | 19024
62.1 ± 1.9 | 9276 | 1377
69.5 ± 7.4 | 1067
82.0 ± 8.6* | 9270
94.1 ± 0.8 | | 811
82.5 ± 4.4* | | K. pneumoniae | 3754 | 3220
96.9 ± 1.5 | 3610
96.0 ± 1.9 | 2206
98.7 ± 0.8 | 1825
92.2 ± 2.9 | 2822
85.9 ± 3.8 | 1541
94.7 ± 1.4 | 335
96.7 ± 2.1 | 3405
90.9 ± 2.9 | 406
89.8 ± 3.8 | 3540
97.0 ± 0.9 | 216
98.5 ± 1.5* | 1913
90.0 ± 4.5 | 3392
94.4 ± 2.3 | 3645
94.1 ± 1.4 | 3210
95.1 ± 1.5 | 2707
96.8 ± 2.1 | 3724
98.2 ± 1.3 | 1542
98.3 ± 1.1 | 3603
90.8 ± 2.0 | 344
38.3 ± 16.3 | 1887
11.3 ± 6.8 | 1351 | 108
86.0 ± 12.1* | 57
100* | 1049
50.3 ± 5.5 | 8 | 102
84.7 ± 13.9* | | Enterobactor spp. | 830 | 830
97.4 ± 1.7 | 659
98.7 ± 0.6 | 669
99.5 ± 0.4 | 163
22.9 ± 14.6 | 98
21.8 ± 15.0* | 273
87.8 ± 6.2* | 62
95.3 ± 4.7* | 492
16.3 ± 9.3 | 115
63.0 ± 15.7 | 635
99.9 ± 0.1 | 61
70.3 ± 23.0* | 251
15.7 ± 6.6 | 578
89.1 ± 2.6 | 830
94.9 ± 2.0 | 511
94.4 ± 2.5 | 439
98.7 ± 0.7 | 830
99.7 ± 0.2 | 198
100.0 ± 0.0 | 830
92.7 ± 1.4 | 137
84.8 ± 3.3* | 91
31.6 ± 18.5* | 324 | | | 316
37.4 ± 6.7 | | | **2012 Montana Antibiogram.** Data were collected from January 1 through December 31. The antibiogram reflects data submitted by 26 clinical laboratories throughout the state (see map). Note: data are presented for surveillance purposes only and should not be used solely in the determination of therapy for individual patients. Number of isolates tested for each drug is displayed in red font; percentage of isolates susceptible to each drug (expressed as mean ± SEM) is shown in black font⁵; *data from five laboratories or fewer (minimum of two); green square indicates variability in the data set with a coefficient of variation (CV) greater than 20%; gray square indicates either no tests performed or fewer than thirty isolates submitted; orange square indicates a possible reporting error or isolates that are a cause of concern. 92.5 ± 1.2 95.4 ± 1.9 97.5 ± 1.4 - 1) Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline-Third Edition. CLSI document M39-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2009. - 2) Performance Standards for Antimicrobial Susceptibility Testing; Twenty Second Informational Supplement. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute; 2013. - 3) Antibiotic Resistance Threats in the United States, 2013. Atlanta, GA: Centers for Disease Control and Prevention; 2013. 95.9 ± 4.1 95.6 ± 2.7* 100.0 ± 0. P. aeruginosa Acinetobactor spp. 4) Laboratory Reporting of Communicable Diseases in Montana (June 2013); http://www.dphhs.mt.gov/publichealth/lab/documents/LABDPHHSDiseaseReportingtoLHJ.pdf 84 100.0 ± 0.0 5) Mean ± SEM was calculated using the percent susceptible value submitted by each laboratory for each drug/organism combination. N values (i.e. number of laboratory submittals) ranged from 2 to 26.